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This paper develops an approach for modelling water quality which provides useful information in situations
where there is little available data, as is the case in many Australian catchments. Different types of erosion
and sediment/nutrient transport models that are currently available are discussed, with a view to identifying
the most appropriate modelling approach for data poor situations. It is suggested that a combined empirical
and conceptual approach would provide useful information on the data poor catchment, while utlising the

limited available data.

1, INTRODUCTION

Water quality issues have become increasingly
important o catchment stakeholders, such as
management groups, land owners and government
departments, in recent years. Information on the
sources of pollutants in catchments and oa the
response of water quality to changing land use
practices is required by such stakeholders.
However this information is limited in many
catchments.  Whilst streamflow data may be
avaitable for several sites in a large catchment
{and often on a short time step, of the order of
minutes, for decadal periods), measurements of
sediment and nutrient concentrations may be
taken at only a relatively small proportion of sites
within the catchment (often with time steps of a
month or more). Erosion and sediment/nutrient
transport models are increasingly being called
upon Lo provide valuable information on water
quality in such data poor situations.

This paper reviews the techniques currently

available for modelling erosion and
sediment/nutrient  transport, focusing on  the

applicability of available models in data poor
circumstances. It 1s suggested that a combined
empirical and conceptual approach would be most
appropriate for utilising the limited information
available in data poor caichments.

2. AVAILABLE MODELS

A wide range of models exist for use in sediment
transport and water quality modelling. These
models differ in terms of complexity, the
pollutants and processes considered, and the data
required for model use. In general there is no
‘best’ madel for all applications, rather the most
appropriate model will depend on the intended
use, data availability and the characteristics of
the catchment being considered.

In general, models fall into three main categories,
depending on the physical processes simulated
by the model and the data deperdence of the
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model:
= empirical;
s conceptual; and

»  physics based.

All three model types have inherent limitations
and advantages in their application. Classification
of models as empirical, conceptual or physics
based is subjective. Most models do not {it neatly
into these categories, rather they are likely to
contain a mix of modules from each of these
categories. Models may also be described as
hybrids between two or more of these classes.

2.1 Empirical Models

Empirical models are generally the simplest of all
three mode! types. Empirical models are based
primarily on the analysis of observations and seek
to characterise response from these data (Wheater
el al 1993). The computational and data
requirements for such models are usually less
than for conceptual and physics based models,
often being capable of being supported by coarse
measurements.  Jakeman er af. {1999) state that
‘the feature of this class of moedels is their high
level of spatial and temporal aggregation and their
incorporation of a small number of causal
variables’. Many empirical models are based on
the analysis of catchment data using stochastic
technigues, and as such are ideal tools for the
analysis of data within catchments (Wheater et al.
1993), They are particularly useful as a first step
in identifying sources of sediment and nutrient
generation. '

Most empirical models do not attempt to
represent the physical processes involved in
sediment generation. For this reason empirical
models tend to be regarded as more catchment
specific than the other two types. Consequently
the ability of empirical models to predict the
effects of changes in catchment characteristics,
such as land use, on water quality and sediment
yields can be limited. Empirical models also tend



not i be event responsive, ignoring the processes

of rainfallrunoff in  the catchment  being
modelled.

Bmpirical  models  are  often  criticised  for
employing unrealistic  assumptions about the
physics of the catchment system. ignoring the
heterogeneity  of  catchment  inputs  and

characteristics, such as rainfalt and soil types, as
well as ignoring the inherent nonlinearities in the
catchment system (Wheater er ol 1993).  Such
models are generally based on the assumption of
stationarity; that is, it is assumed that underlying
conditions remain unchanged for the duration of
the study pertod. This assumption limits the
for

He

predicting the effects of catchment change.

One example of an empirical erosion model is the
tandscape-factor approach of Moss er af, (1993).
This approach was used o derive nitrogen,
phosphorus and suspended sediment exports from
Queensland coustal catchments according to:

Str)=LEDR
Nn=LECPDFR
R =storm discharge (ML) / catchment area (km?)

where

Ste) s suspended sediment

N(t) is nutrient export

L is area of a specitied land use

£ is erosion rate for a specified land use

£ ts delivery ratio for a specified land use

K s runoftf correction factor for a specified fand
use

C is soil nitrogen or phosphorus content

P is enrichment ratio (phosphorus only}

F s dissolved  nitrogen or  phosphorus
compensation factor,

Land use is broken dows into pristine lands,
grazing and cropping.

2.2 Conceptual Models

Conceptual models are typically based on the
representation of the catchment as a series of
internal storages. They usually incorperate the
underlying physical mechanisms of sediment and
runoff  generation  within  their  structure,
representing flow paths within the catchment as a
series  of  storages, each requiring  some
characterisation of its dynamic behaviour.
Conceptual models tend to lump representative
processes over the scale at which outputs are
simulated (Wheater e al. 1993). Parameter values
for conceptual models have typically been
obtained through calibration against observed
data such as stream discharge and concentration
measurements (Abbott er ol 1986).
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Conceptual models tend {0 include a general
description  of catchment  processes,  without
including the specific detils of process
interactions,  that  would require detailed

catchment information (Sorooshian 1991). This
atlows these models to provide an indication of
the qualitative and quantitative effects of fand use
changes, without requiring large amounts of
spatially and temporally distributed input data,

Due to the requirement that parameter values are
determined through calibration against observed
data, conceptual models tend to suffer from
problems associated with the identifiability of
their parameter values (Jakeman and Hornberger
1993} Most calibration techniques used for
conceptual models of medivm complexity (say
more than six parameters) are capable of finding
only Tocal optima at best. This means that there
are many possible ‘best’ parameter sets available.
Spear (1995} identified this problem in large
simulation models stating that ‘there is not a
single point in the parameter space associated
with good simulations, indeed there generally is
not even a wel-defined region in the sense of a
compact region inerior to the prior parameter
space.” In general simpler conceptual models
have fewer problems with model identification
than more complex models. Thus problems with
model identification can be muinumised through
limiting the number of parameters to be estimated
through calibration and possibly identifying
additional parameters using a priori knowledge of
the system (Kleissen er af. 1990; Wheater ef al.
1993).  This reduction in probiems associated
with identifiability through simplification of
models may come at the expense of goodness of
fit to calibration data. More complex models are
more likely to provide a better fit to calibration
data, altheugh this does not necessarily extend to
providing better predictions of future behaviour,
as complex models run the risk of overfitting
calibration data (Wheater et af. 1993).

The lack of uniqueness in parameter values for
concepiual models means that the parameters in
such models have limited physical interpretability
(Wheater e al. 1993). However, this problem can
also be associated with empirical and physics
based models. Physics based models in particular
are often over-parameterised whereas empirical
models tend to be naturally much simpler in their
level of parameterisation {(Beven 1989 Wheater
et al. 1993),

An example of a simple conceptual mode! is the
IHACRES rainfall-runoff model.  The model,
using only one storage (as for caichments without
significant buseflow) is given by:

U= alyy + BU,



where O, is modelled streamflow Uy is effective
rainfail, which can be calculated in its simplest
manner as a product of raw rainfall and a
catchment meisture mndex.

2.3 Physics Based Models

Physics based models are based on the solution of
fundamental  physical  equations  describing
streamflow  and sediment/ nutrient  generation
within the catchment. Standard equations used in
such models are the equations of conservation of
mass and momentum for Tow and the equation of
conservation of mass for sediment (eg. Bennett
1974).

In theory. the parameters used in physics based
models are measurable within the caichment and
seare known'. However, in practice the large
aumber of  parameters  involved and  the
heterogeneity of important characteristics within
the catchment means that these parameters must
often be calibrated against observed data (Beck ef
gl 1995 Wheater e al. 1993).  This creates
additional uncertainty in parameter values. Also,
even in situations where parameters can be
‘measured’ within the catchment, errors in the
measuremen! of important characteristics, and

differences between model grid scales and
measurement  scales  will  create  additional

uncertainty as to the veracity of model outcomes
{Bloschl and Sivapalan 1995). Another important
consideration when using physics based models is
that “smatl scale parameters used for small scale
models may lose physical significance at larger
scales’ (Seyfried and Wilcox 1993).  Where
paramelers cannot be measured  within  the
catchment they must be determined  through
calibration against observed data. Given the large
number {possibly hundreds) of parameter values
needed to be estimated using such a process,
problems with the fack of identifiability of model
parameters and non-unigqueness of  ‘best it
sotutions can be expected (Beck 1987 Wheater er
al. 1993).

The derivation of mathematical expressions
describing individual processes in physics based
modeds is subject to numerous assumptions that
may not be relevant in many real world situations
(Dunin  1975) In general, the equations
governing the processes in physics based models
are derived at the small scale and under very
specific  physical  conditions  (Beven  1589).
However, in  physics based models these
equations are regularly used at much greater
seales, and uader different physical conditions,
Generally, the equations are derived for use with
continuous spatial and temporal data, however the
data used in practice s often point source data
taken 1o represent an entive grid cell within the

catchment {Beven 1989). The viability of

- 205

lumping up small scale physics to the scale of the
spatial grid used in many physics based models is
questionable (Beven 1989). Lane ef al {1995)
state that “model parameters derived in this
manner represent nothing more  than  fitted
coefficients  distorted  beyond  any  physical
significance’.  Specificaily there is a lack of
theoretical  Jjustification  for  assuming  that
equations apply equally well at the grid scale, at
which they are representing the fumped aggregate
of heterogeneous subgrid processes (Beven 1989}
These  distortions  would  conceivably  be
exacerbated with the use of hillslope scale models
for medelling entire catchments. Many physics
based models have been developed on a field or
hillstope scale.  Extending these models to an
entire catchment by summing across a spatially
distributed grid will create problems with error
accumulation.

An exampie of a physics based model for
sediment and nutrient transport is the CREAMS
model. Sechment transport in the CREAMS
mode! is caleulated according to the steady-state
continuity equation

G,

dx

where G is the sediment load, x is distance, D is
the detachment or deposition rate by flow and 3,
is the rate that sediment is added to the flow from
lateral arens. These parameters are caleulated on
a grid scale using equanons representing the key
physical processes,

3 CONSIDERATIONS MODEL
APPLICATION

Jakeman et al. (1999) noted that the difficulties in
environmental modelling can be characterised as

N

problems  of  natural  complexity, spatial
heterogeneity and the lack of available data. The
complexity  of natural  systems Is due to

differences in dimensions, temporal and spatial
scales, and thresholds of water tlow and sediment
and nutrient transport through and within the
media. Natural systems, from plot {o catchment
scale, tend to show a great deal of variation.
Grayson and Moore (1993) noted that the scale at
which uniformity is assumed in  hydrologic
models iy generally greater than the scale at which
directly measurable parameters are measured in
the field, aithough smaller than shown by the
outflow hydrographs. Thus, model predictions

are  subject to errors as a resuit of the
inconsistency  of  scale  between  measured

parameters and the way they are used in the
model.  This problem is particalarly evident in
data intensive models.

The model complexity is determined by the detail
of the catchment processes simulated. Not only
do the number of equations requiring solution



merease in a model representing a large number
of detuiled processes, but so do the number of
input parwmeiers (Bennert 1474). One common
misconception 1§ that model accuracy invariably
increases with model complexity. This is not the
case. The tradeoft between model complexity and
accuracy s not stmply that increased model
complexity increases model accuracy. Simpler
catchment models can perform equally well or at
feast may not be subsiantially outperformed by
more complex models (eg. Loague and Freeze
1985), Jakeman and Hornberger {1993} confirmed
this resalt for different levels of complexity in
conceptual models. Complex models sutfer from
prablems with error accumulation and model
identifiability, to overparameterisation
{Beven 19389, 1991, [996). Beven (1989) argues
that the physicad nature of model paramerers in
physics  based model does not  circumvent
problems ol overparameterisation  unless
additional parameter obhservations are available at
an appropriate scale. Bewven (1991} states that ‘in
this  sense  then. physically-bused  distributed
models are no different from any conceptual
model”. The fack of available input data for such
models means that many of the model parameters
must be determined through calibration. This
leads to problems of non-unigqueness and means
that the physical interpretability of parameter
values is questionable.

duyes
LU

Empirical and simple conceptual models tend not
to require large guantities of data and are
computationally simple. In contrast, the physics
based madels require a large amount of input data
and consequently can be difficult to use. This can
be a particular problem In Ausiralian cotchments
where input data is typically sparse, A large
number of parameters in these models will have
to be determined through calibration in such
sparse data situations, raising difficulties with
identifiability, model uniqueness and the physical
interpretability of calibrated parameters,  These
problems will also be observed with complex
conceptual models.

An important consideration in choosing models is
the accuracy and validity of the model.  This
relates 1o the issue of suitability of the medel to a
particular environment. The use of models that
are based on a large amount of detailed
observations collected under different conditions
(eg. different scales, soils, climatic regions) may
not be valid or feasible in data poor catchments
where physical catchment conditions may be very
different.

& COMCLUSIONS FOR MODELLING
DATA POOR CATCHMENTS

Data sets on sediment and nutrient concentrations
in data poor catchments are typically only
available at farge catchment scales of the order of

- 206 -

10G to 1000 square kilometres, as well as for a
limited temporal period, often only up to a few
years. Such intormation is inadequate to support
the application of complex models which contain
large numbers of parameters and/or which make
detailed assumptions about the physical processes
driving transport. Only the key catchment
processes warrant description in such data poor
circumstances.

Complex conceptual and physics based models
also place high demands on the user, who must be
very experienced technically in using models.
Even for the experienced, the unique calibration
of 30 many parameters is not possible, Different
users will therefore obtain different parameter sets
{(Wheater er al. 1993),

In addition, physics based models are typically
only designed to be applied at small scales. Their
application to larger scales brings attendant
problems of high computational requirementis and
errors associated with the application of these
models  in situations the underlying
assumptions are not met.

where

Theretore, it s only empirical models and simple
conceptual models which can be considered as
suitable for modelling catchment exports in data
poor catchments,

5. ELEMENTS OF A NEW APPROACH

Given the problems with complex models the
most practicable approach, particularly in data
poor catchments, is one integrating an empirical
landscape-factor approach with simple conceptual
models (see Figure 1), Landscape factor models
will be useful when predicting at ungauged sites,
such when  conceptual  models  require
predictions al sub-catchment or even landscape
scales where ne measurements are available.
That 1s, they will be uselul for disaggregating the
exports predicted at larger catchment scaies and

a8

lend themselves to being incorporated into
conceptual  models  as  sub-catchment  scale
predictions,  Conceptual models will be useful

especially to link sub-catchment exports and route
them through catchment and basin networks, As
runotl and discharge are the major drivers of
catchment exports, a good conceptual model will
be one which:

i) predicts runoft frem catchments in response
to precipitation (and historic  catchment
conditions) and then routes discharge and
pollutants through an instream component;
and

i)  incorporates the key processes {eg. quick
flow, slow  flow, streamm  advection,

suspension and resetthing) in a parameirically
efficient manner.

With climate being the major determinant of



long-term variability of catchment exports, a
conceptual model, which allows for the input of
rainfall and other climate variables (such as
temperature), is essential to help characterise the
variability of exports.

An approach combining a landscape factor model
with conceptual model components, accounting
for processes of rainfall-runoff, runoff-sediment
generation, streambank erosion and in-stream
routing of tlow, nutrients and sediment, should
provide a means for improved modelling and
increased information on sediment and nutrient
exports in data poor catchments.

The steps required io apply such a combined
maodelling approach may be as follows:

1. Calibrate and apply a rainfall-runoff model at
all sites where there is any discharge data.
An example of a rainfall-runoff model which
could be used for this purpose is IHACRES.
This model has been successfully applied for
streamtflow  modelling  in Australian
catchments and worldwide (eg. Jakeman et
al. 1993, Post and Jakeman 1990; Ye et al
{997}, while having a relatively simple
parameterisation.

DPerive relative indices of erosion and
delivery potential based on landscape
attributes for use in a landscape-factor model,
such as that used by Moss et af. (1993).
Calibrate the landscape-factor model in
similar  scale catchments to generate
estimates of static loads at subcatchment
scales.

Construct a4 model to predict the streamflow
dynamics at subcatchment scale to generate
climate-sensitive Joads. This would involve
calibration of a runoff-sediment component
on any sediment or nuirient concentration
data that is available, using the already
calibrated rainfall-runoff models. A runoff-
sediment module could be used is the runoff.
sediment component of the LASCAM model
{Viney and Sivapalan 1999).

Apply an instream sclute transport model to
infer reach sources and sinks over reaches
where upstream and downstream
concentration  data  exist. This  allows
guantification of the significance of bank
erosion  and  tributary  inflows  versus
streamflow. The STARS model (Green et al.
1999} could be used for this component,

[
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O Water quality measiremants /ET?\\
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hoandaries - RN
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Figore 1 - Idealised caichment

Figure 1 iliustrates some potential uses for such a
combined modelling approach. The first of these
is applied over the catchment scale, where load
estimates are of interest at a number of points or
nodes in the catchment. If discharge data is
available at nodes 1, 2, and 3 (see Figure 1) and
some concentration data is available at points 2
and 3, then it would be possible to calibrate the
rainfall-runoft model at all three points. The
STARS model, for example. could be
implemented between nodes 2 an 3 to consider
instream composents, and to  quantify the
significance of streambank erosion. THACRES
and the runoftf-sediment component of LASCAM,
for example, could be used over the catchment
scale to accounts for rainfall/ runoff and runcft
sediment processes. A landscape factor model
could be applied for small scale predictions to
identify relative fand use contributions. A second
potential use of the appreach is where limited
sediment/nutrient concentration data is available
for subcatchment A.  The landscape factor
approach could be calibrated to subcarchment B,
an area of similar size to A, and could be linked to
a rainfall-runoff model to allow for climate-
sensitive loads. This model could then be applied
to subcatchment A to provide information on
pollutant concentrations.

It may be argued that this recommended approach
is similar to the approach using (complex)
conceptual models, such as AQUALM (Phillips et
al. 1993). The main difference is the order in
which each component is utilised and parameters
are calibrated.  The tendency with complex
conceptual models seems to be to select
parameters at subcatchment scales and to calibrate
them at the larger catchment scale, generally
ignoring the problem of parameter identifiability.
The approach recommended here works in
reverse, building simple jumped runoff and
instream models at the larger catchment scale and
disaggregating their predictions using a simple
empirical but landscape driven method, that
allows for the dynamics of runoff generation.
Another advantage of the approach presented here
is in the models suggested, which have
advantages not only of best accuracy, but also of
parameter efficiency.
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